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Singularity Theory

T. de Jong, J.H.M. Steenbrink

1. INTRODUCTION
T'he existence of a ‘Dutch Singularity School’ was first noticed by N.H.
Kuiper at the Collogue sur la monodromie in Metz in February 1974. E.J.N.
Looijenga, D. Siersma and J.H.M. Steenbrink, who were to defend their
Ph.D. theses in Amsterdam that year, were present at that meeting and
their work was a topic of the discussion. Five years later, this triple started
the ZWO-project Singularity Theory, after J. Seidel invited them to set
up a common activity of larger scale than usual at ZWO (predecessor of
the present National Research Council NWO). Under this flag, W.A.M.
Janssen, G.R. Pellikaan, D. van Straten and T. de Jong completed their
Ph.D. theses and several others, such as J. Stevens and H.J.M. Sterk, were
strongly influenced by its activities.

In this article we will focus on one characteristic aspect of the project:

the contributions of Pellikaan, Van Straten and De Jong to the deformation
and classification theory of singularities.

2. SINGULARITIES

2.1. Introduction

In the context of this article, the subject of singularity theory is the local
study of complex analytic sets. Let U be an open subset of C" and let
f1,..., fx be holomorphic functions on U. Then the set of common zeroes
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of fi1,...,fr 1s called an analytic subset of U, and every analytic set is a
union of such subsets. The interest in such sets arose when people realized
that analytic sets can be quite rich from the topological point of view.
Consider one holomorphic function f in complex variables z;, z,. Suppose
that f(0,0) = 0. If one of the partial derivatives of f at (0,0) is non-zero,
then there exists a holomorphic function g such that (f, g) is a holomorphic
coordinate system at (0,0) and, hence, the analytic set {f = 0} is similar
to a linear subspace at (0,0). However, if df(0,0) = 0, then the situation is
quite different. The richness of the local topological structure can be seen
by intersecting the set {f = 0} with a small sphere centered at (0,0); the
result 1s an algebraic knot or link inside the three-dimensional sphere. In
higher dimension one can construct exotic spheres in this way:.

A germ of an analytic set at 0 in C" is an equivalence class of zero-

sets V(f1,..., fr) defined in some open neighbourhood U of 0 € C". It is
therefore represented as

{(a’lj' . -aa*n,) - U . f]_(&l, c e e ,CL“) e ‘f}l(a]_., . s ’(Ln) p— O}_

T'wo such sets are called equivalent if their intersections with a sufficiently
small neighbourhood of 0 agree.

A more subtle notion is that of germ of an analytic space, also called
singularity. Here one does not consider the zero set alone, but also the
functions which define this set. For example, the space defined by the
equation 2 = 0 in C (a ‘thick’ point of multiplicity two) is considered to be
different from a regular point (defined by x = 0). Equivalently, a germ of an
analytic space can be defined by its ‘ring of holomorphic functions’, which is
a quotient of the convergent power series ring C{x,...,x,}. An important
example 1s the singular locus of a hypersurface singularity f(x) = 0, which
1s defined as an analytic space germ by the equations f(z) = 9, f(x) = ... =
On f(x) = 0. Any analytic space has an underlying analytic set. Conversely,
for any germ of an analytic set there is an associated analytic space, defined
by the ideal of all functions vanishing on this analytic set. Such analytic
spaces are called reduced.

2.2. Some terminology

The simplest case is where all the defining equations can be taken to be
linear and vanishing in the origin. In this case the singularity we get we
call smooth (its singular locus is empty). Of course, in singularity theory
this case 1s hardly interesting. The simplest singularity which is not smooth
i1s the A, singularity, given by a non-degenerate quadratic equation, for
example 27 + ...+ z2 = 0. The case n = 1 we considered above ( the fat
point). Below we give real pictures for the A; curve singularity xy = 0 (see
figure 1), and the A; surface singularity given by xy — z* = 0 (see figure 3).
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Figure 1. Figure 2.

T'he above singularities are examples of hypersurface singularities, singu-
larities which can be given by one equation. Hypersurface singularities in
turn are examples of complete intersection singularities: here the number of
functions needed to describe the singularity is equal to the codimension of
the singularity. One of the simplest examples of a singularity which is not
a complete intersection is the union of the coordinate-axes in three-space
(see figure 2). Here one needs three equations: xy = rz = yz = 0, whereas
the codimension is two.

Even 1if one is just interested in smooth spaces, it might be interesting,

Figure 3.
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handy and even ‘necessary’ to study spaces with singularities. For exam-
ple, classically smooth curves (Riemann surfaces) were studied by taking a
model 1n the projective plane, which always exists by the theorem of the
primitive element. The big advantage of studying plane models is of course
that they can be given by just one equation. The price one has to pay is
that the plane model in general must have singularities. This can be seen
for instance by the genus formula. For a smooth plane curve with genus g
and degree d one has the relation

g — (d—1)(d—2)

2
from which it follows that a curve of genus two does not have a smooth plane
model. Similarly, surfaces were studied by taking a model in P°. Here one
even has to allow non-isolated singularities, i.e., the set of points where the
surface 1s not smooth is a curve itself.

Singularities also occur naturally in the study of so-called minimal models
of smooth algebraic varieties. Minimal models are known to exist for curves
and surfaces for a long time. It was discovered by Mori and Reid, that for a
good notion of minimal models for higher dimensional varieties, one has to
allow singularities on the minimal model. Another interesting motivation
1s the study of exotic spheres. Exotic spheres are differential manifolds
homeomorphic but not diffeomorphic to the standard sphere. Interesting
examples of these appear as links of singularities. (The link of an analytic
set 1s the intersection of a suitable representative of this analytic set with

a small sphere.) For example, the link of the singularity defined by the
equation

5 23 2 2 2
I?+£2+£3+$4+i85:0

1s an exotic sphere of dimension seven.

3. DEFORMATIONS OF SINGULARITIES

One way to study singularities started off with the book of J. Milnor [2].
He considered hypersurface singularities, defined by a holomorphic function
f. Take the ball B, with center 0 and radius € in C" and a disc D, with
center O and radius 7 in C, such that 0 < n << ¢ << 1. One of the main
results of Milnor is that the map

f:Ben f7H(Dy\{0}) — Dy\{0}

is a C'°° fibration. The ‘general fibre’ f = ¢ for t € D,\{0} is called the
Milnor fibre. In case we have an isolated singularity, the Milnor fibre is
homotopy equivalent to a finite wedge of spheres of dimension n — 1; the
number of those spheres is called the Milnor number of the singularity.
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Figure 4.

There is a simple formula for computing the Milnor number g, as the C-
dimension of the algebra C{x,...,x,}/( S)Ifl ey (;if ).

Let us consider the example of the Dj-singularity «° — y? = 0. One
can take here even € = oo and 77 = 2, so the Milnor fibre can be given by
r°> — y°> = 1. Therefore, the Milnor fibre is an elliptic curve with the three
points at infinity removed. Topologically the Milnor fibre is as in figure 4.

We see that one can retract the Milnor fibre on the four drawn circles.
If one now makes a graph with vertices corresponding to these circles and
edges corresponding to their points of intersection, one obtains the Dynkin
diagram of type D!

One can ask in general whether for a given isolated singularity X there
exists a flat one-parameter family X+ — 7 (71" is a small disc in C) such
that for ¢ = 0 one has the original singularity X and for ¢ # 0 the fibre
1s smooth. Here ‘flat’ is a technical notion (¢, a parameter on 7', is to be
a non-zero divisor on the space X-p; this insures that much information
of the zero-fibre can be read off the general fibre. It implies for instance
that each component of X maps surjectively to the parameter space T,
explaining the word ‘flat’). For complete intersection singularities, every
small perturbation ot the tunctions defining the singularity gives a flat one-
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parameter deformation, but for non-complete intersections the situation is
much more complicated. For mstance, the space defined by the equations

ry—t=rz—t=yz:—-1t=0

is not a flat one-parameter deformation of the coordinate axes in C*. In
general it 1s not clear that one can give non-trivial (i.e., not isomorphic to
a product) deformations of a singularity at alll Indeed there exist examples
of singularities which are rigid, i.e., admit only trivial deformations. But
there exist also examples of singularities, the easiest one being the cone over
a rational curve in P*, due to H. Pinkham which admit two one-parameter

deformations for which the general fibres are smooth, but not homeomor-
phic!

4. CLASSIFICATION OF SINGULARITIES

One can try to classify singularities up to holomorphic coordinate changes.
T'his goal 1s too ambitious in general, but a beginning of the classification of
hypersurface singularities was made by V.I. Arnol’d, R. Thom, Mather and
Siersma in the early 1970’s. The list starts with the simple singularities:

okl 0 2
Ap it + 23 4+ ...+ 22 =0

* v — 2 2
D;i.,.::,z':f:z:g-k-a:g l—}—:rr;;—l—...—}-:zr“ = 0; k>4

'l ——n

. 4 P el
Eb.£1+.12““u( ...+.L,”----0

Lo bo

" 2 r2
E;: xixs —I—;I:‘f +x3+...+x; =0

Il
5 3 2 2

Here ‘simple’ is a technical term, meaning more or less that the singu-
larity can only deform in a finite number of isomorphism classes of other
singularities. The labels A, D, E come from the Dynkin diagrams of simple
Lie groups. In fact, there exist at least 15 different characterisations of these
simple singularities.

A peculiar aspect of Arnold’s classification is that singularities tend to
appear in series. We quote Arnol’d [1|: ‘Although the series undoubtedly
exist, it 1s not at all clear what a series of singularities i1s’. And: ‘It is only
clear that the series are associated with singularities of infinite multiplicity’
(non-isolated singularities). Indeed, in the example of A, and Dj singu-
larities one can formally put & = oo to get the non-isolated singularities of
figure 5.
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Figure 5.

5. THE PROJECT SINGULARITY THEORY

5.1. Hypersurface singularities

In this section we discuss some of the results obtained in the SMC-project
Singularity Theory. Inspired by the remarks of Arnol’d, Siersma and later
his student Pellikaan started to study the simplest types of non-isolated
singularities: hypersurface singularities with one-dimensional singular locus
and transverse type A;. Transverse type A; means that if one takes a
transverse slice at the general point of the singular locus the intersection is
an 1solated A; singularity. For example, in figure 6 the first singularity has
transverse type A; whereas the second has not.

One of the goals of Siersma and Pellikaan was to understand the topology
of the Milnor fibre of such singularities. In the case of an isolated singularity,
this can be done by deforming the defining function to a Morse function,
1.e., a function with only singularities of type A,. The number of Morse
points appearing 1s just the Milnor number. This ‘morsification method’
was generalized to the case that the reduced singular locus is a complete
intersection, and led to so-called admissible deformations. Loosely speaking,
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Figure 6.

these are deformations of the pair (f, 2) where X is the singular locus of f.

An example of a deformation which is not admissible is the deformation
of Asc to Ay, given by the equation yz — tz*T! = 0. For the special fibre
the singular locus is a line, but for the general fibre the singular locus is just
one point. Theretore this does not induce a flat deformation of the singular
locus, and the deformation is not admissible. The deformation suggested
by figure 7 however, i1s admaissible.

Using these admissible deformations Siersma and Pellikaan proved a the-
orem on the homotopy type of the Milnor fibre for hypersurtace singularities
whose singular locus is a complete intersection with transverse type A;. Ex-
cept for some special cases, the homotopy type turns out to be a wedge of
spheres (as in the isolated singularity case), and a formula for the number

Figure 7.
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of those was given by De Jong. Van Straten proved similar formulas us-
ing differential forms. Later on De Jong extended these results to certain
cases of hypersurface singularities whose singular locus is a line and whose
transverse type 1s a simple isolated singularity:.

9.2. Weakly normal surface singularities

In his Ph.D. thesis, Van Straten studied weakly normal surfaces. Important
examples of these are surfaces which are obtained as generic projections of
smooth (or even normal) surfaces in C3. Such a surface has a singular locus
which is a curve with isolated singular points itself. The structure of the
surface near these special points is investigated by ‘mproving’ them, i.e.,
replacing them by certain curve configurations, analogous to the Process
of resolution of isolated singularities by blowing-up. Van Straten gener-
alized many results from the theory of normal surface singularities to this
class of non-isolated surface singularities, and complemented in this way the
knowledge obtained by Pellikaan. Also this approach led to a rich treasure
of examples, obtained from a rough classification of weakly normal surface
singularities by the structure of their improvements.

5.3. Admassible deformations

Pellikaan gave the following very interesting example of an admissible de-
formation: consider the hypersurface singularity given by the equation
(zy)* + (y2)? + (zx)? = 0: the cone over a quartic curve in the complex
projective plane with three A; singularities (see figure 8). This hypersurface
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singularity is a projection of the cone over the rational normal curve of de-
gree 4. Pellikaan wrote down explicitely two essentially different admissible
deformations, as in figure 8. It turned out that they correspond exactly to
the two different deformations of the cone over the rational normal curve
of degree 4 discovered by Pinkham! Note that the surface in Pellikaan’s
example 1s a generic projection of the cone over the rational normal curve
of degree 4.

Inspired by Pellikaan’s example, De Jong and Van Straten started to de-
velop the following program: given a normal surface singularity, project it to
C*® to obtain a weakly normal surface. given by an equation f(x,y,z) = 0
and with singular locus ¥. Try to determine which deformations of the
projected surface are obtained as projections of deformations. Surprisingly,
the deformations they found were precisely the admissible deformations of
(f»X), which were introduced by Siersma and Pellikaan. The advantage of
course 1s that one needs just one equation to describe the projection, the dis-
advantage being having to allow non-isolated singularities. This projection
method has been very fruitful: the base space of a semi-universal deforma-
tion of rational quadruple points could be determined, in spite of the fact
that equations for these singularities have never been written down. Using
the projection method one also sees that in series of singularities (which we
still do not know what they are) deformation theory behaves well, i.e., for
two members of a series, it is easy to compare the deformations of one with
the other. Further applications of this projection method are still being
discovered.
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